Noisy Data Make the Partial Digest Problem NP-hard
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Abstract

The PARTIAL DIGEST problem — well-known for its applications in computational
biology and for the intriguingly open status of its computational complexity — asks
for the coordinates of n points on a line such that the pairwise distances of the points
form a given multi-set of (g) distances. In an effort to model real-life data, we study
the computational complexity of a minimization version of PARTIAL DIGEST, in which
only a subset of all pairwise distances is given and the rest are lacking due to experi-
mental errors. We show that this variation is NP-hard to solve exactly, thus making
the existence of polynomial-time algorithms for this problem extremely unlikely. Our
result answers an open question posed by Pevzner (2000). We then study a maximiza-
tion version of PARTIAL DIGEST where a superset of all pairwise distances is given,
with some additional distances due to inaccurate measurements. We show that this
maximization version is NP-hard to approximate to within a factor of |D|%_E for any
€ > 0, where |D| is the number of input distances, which implies that polynomial-time
algorithms cannot even guarantee to find a solution for the problem that comes close
to the optimum. Our inapproximability result is tight up to low-order terms as we give
a trivial approximation algorithm that achieves a matching approximation ratio. Our
optimization variations model two different error types that occur in real-life data.
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1 Introduction

The PARTIAL DIGEST problem is one of the most intriguing problems from computational
biology: on the one hand, it is a basic problem with relevant applications in DNA sequenc-
ing; on the other hand, its computational complexity is a long—standing open problem. In
the PARTIAL DIGEST problem we are given a multiset D of distances and are asked to find
coordinates of points on a line such that D is exactly the multiset of all pairwise distances
of these points.

For  example, it D =
{2,5,7,7,9,9,14,14,16,23}, then
P = {0,7,9,14,23} is a feasible
solution (cf. Figure).

More formally, the PARTIAL DIGEST problem can be defined as follows.

m

Definition (PARTIAL DIGEST). Given an integer m and a multiset of k = (2) poSi-
tive integers D = {dy,...,dy}, is there a set of m integers P = {py,...,pm} such that
{|p,'—p]‘||1§i<j§m}:D?

This problem has — among others — applications in the study of the structure of DNA
molecules. Indeed, given a large DNA molecule, restriction enzymes can be used to gener-
ate a physical map of the molecule. A restriction enzyme cuts a DNA molecule at specific
patterns, the restriction sites. For instance, the enzyme Eco RI cuts at occurrences of
the pattern GAATTC. Under appropriate experimental conditions (e.g. by exposing the
enzyme for different time periods or by using very small amounts of the enzyme), all
fragments between each two restriction sites are created. This process is called partial
digestion, in contrast to full digestion, where the enzyme is applied long enough to cleave
at all restriction sites. The lengths of the fragments (i.e., their number of nucleotides)
are then measured (e.g. by using gel electrophoresis). This leaves us with the multiset
of distances between all restriction sites, and the objective is to reconstruct the original
ordering of the fragments in the DNA molecule, which is the PARTIAL DIGEST problem.

In reality, the partial digest experiment cannot be conducted under ideal conditions as
outlined above and thus errors occur in the data [17, 6]. A first source of erronous data
is the digestion phase of the experiment: it can happen that a particular restriction site
does not get cut in combination with all other restriction sites, but only in combination
with some restriction sites; thus, some distances will be missing in the data. On the other
hand, an enzyme may erronously cut at a site that is similar, but not exactly equivalent
to a restriction site; thus, some distances will be added to the data even though they
do not belong there. A second source of errors is the addition of distances through the
insertion of third-party particles during the experiment, such as DNA from the staff. A
third source of errors is the measurement phase: using gel electrophoresis, measurement
errors within a range of upto 5 percent are very common; moreover, distances that do not
occur in a large number of copies cannot be read with this measuring technique as they do
not leave large enough spots, thus leading to omission of certain distances; furthermore,
small fragments can be lost since they run of the end of the gel. Finally, determining the
proper multiplicity of a fragment is a non—trivial problem. Hence, three types of errors



occur: measurement errors, where the length of a distance is erroneous; additions, where
additional distances occur that do not correspond to any fragment; and omissions, where
distances of fragments are missing. In this paper, we define two optimization variations of
PARTIAL DIGEST, where the first variation models addition errors and the second variation
models omission errors. Each variation allows only for one type of error to occur, and we
will prove hardness results for both variations, implying that no polynomial-time algorithm
can guarantee to find optimum or even nearly optimum solutions. Intuitively, the problem
of modeling “real-life” instances — in which all three error types can occur — is even harder.

The MIN PARTIAL DIGEST SUPERSET problem models the situation of omissions,
where we are given data in which some distances are missing, and we search for a set of
points such that the number of omitted distances is minimum. It is formally defined as
follows.

Definition (MIN PARTIAL DIGEST SUPERSET). Given a multiset of k positive inte-
gers D = {dy,...,di}, find the minimum m such that there is a set of m integers
P={p1,....pm} with D C{|p; —p;| |1 <i<j<m}.

The MAX PARTIAL DIGEST SUBSET problem models the situation of additions, where
we are given data in which some wrong distances were added and we search for a set of
points such that the number of added distances is minimum. A formal definition is as
follows.

Definition (Max PARTIAL DIGEST SUBSET). Given a multiset of k positive integers D =
{dy,...,dr}, find the mazimum m such that there is a set of m integers P = {py,...,pm}
with {{pi — py] | 1< i < j <m) C D.

Our two variations of the PARTIAL DIGEST problem allow the multiset of pairwise
distances in a solution to be either a superset (i.e., to cover all given distances in D
plus additional ones) or a subset (i.e., to contain only some of the distances in D) of
the input set D. If a polynomial-time algorithm existed for either MIN PARTIAL DIGEST
SUPERSET or MAX PARTIAL DIGEST SUBSET, we could use this algorithm to solve the
original PARTIAL DIGEST problem as well: any YES instance of PARTIAL DIGEST is an
instance of both problems above whose optimum is (T;), any NO instance of PARTIAL
DIGEST is an instance of MAX PARTIAL DIGEST SUBSET (resp., MIN PARTIAL DIGEST
SUPERSET) whose optimum is at most () — 1 (resp., at least (7)) 4 1).

However, we show that such algorithms cannot exist unless P = NP: We first show
that computing the optimal solution for the MIN PARTIAL DIGEST SUPERSET problem
is NP-hard, by proposing a reduction from the NP-hard problem EQUAL SUM SUBSETS.
This implies that we could use a polynomial-time algorithm that solves MIN PARTIAL
DiGEST SUPERSET to solve EQUAL SUM SUBSETS in polynomial time as well, which could
then be used to design polynomial-time algorithms for all NP-complete problems. Our
result provides an answer to the open problem in [11, Problem 12.116], which asks for an
algorithm to reconstruct a set of points, given a subset of their pairwise distances. We then
strengthen our hardness result by considering the t~-PARTIAL DIGEST SUPERSET problem,
where we restrict the cardinality of a solution to at most ¢, for some fixed parameter ¢:

Definition (¢-PARTIAL DIGEST SUPERSET). Given a multiset of k positive integers D =
{dy,...,dy}, is there a set of m <t integers P = {py,...,pm} such that
D C{lpi—psl [1 <0< j<mj.



Clearly, the NP-hardness of MIN PARTIAL DIGEST SUPERSET implies the NP-hardness
of t-PARTIAL DIGEST SUPERSET, for some t. We show that the above problem remains
NP-hard for any fixed t = Q(|D|"/?1¢) and any € > 0. This result is tight in a sense, since
any solution (even from the original PARTIAL DIGEST) must have at least cardinality
t= QD).

Asfor the MAX PARTIAL DIGEST SUBSET problem, we show that there is no polynomial—
time algorithm for this problem that guarantees to achieve an approximation ratio' of
|D|%_E for any € > 0, unless P = NP, by proposing a reduction from MaxXiMuMm CLIQUE.
We also point to a trivial approximation algorithm that achieves a matching approximation
ratio. Thus, our result is tight up to low-order terms. Our inapproximability result means
that not only can we not expect a polynomial-time algorithm that finds the optimum
solution, but we cannot even expect a polynomial-time algorithm that finds solutions that
are a factor |D|%_E off the optimum. The problem MaxiMuMm CLIQUE is very hard to ap-
proximate and our reduction is gap-preserving (as introduced in [2]), thus transferring the
inapproximability of MAXIMUM CLIQUE to MAX PARTIAL Dic¢EST SUBSET. Our hardness
results show that a polynomial-time algorithm for the original PARTIAL DIGEST (if any)
cannot be obtained by looking at the two natural optimization problems we considered
here. If any such algorithm exists, then it must exploit some combinatorial properties of
PARTIAL DIGEST instances that do not hold for these optimization problems.

The exact computational complexity of PARTIAL DIGEST is a long—standing open prob-
lem: it can be solved in pseudopolynomial® time [13, 8], and there exists a backtracking
algorithm (for exact or erroneous data) which has expected running time polynomial in
the number of distances [16, 17], but exponential worst case running time [19]. If the
points are not on a line but in d-dimensional space, then the problem is NP-hard for some
d > 2 [16]. However, for the original PARTIAL DIGEST problem, neither a polynomial—
time algorithm nor a proof of NP-completeness is known [10, 3, 11, 4, 15, 12]. Recently,
the PARTIAL DIGEST problem has received increasing attention due to its application in
computational biology. However, in its pure combinatorial formulation it has been studied
for a long time: It appears already in the 1930’s in the sphere of X-ray crystallography
(acc. to [16]); the problem is very closely related to the theory of homometric sets® [16]; it
can be formalized by cut grammars, which have one additional symbol §, the cut, that is
neither a non—terminal nor a terminal symbol [14]; and finally, the problem is also known
as “turnpike problem”, where we are given the pairwise distances of cities along a high-
way, and we want to find their ordering along the road [4]. In the biological setting, many
experimental variations have been studied: Double digestion, where two different enzymes
are used [15]; probed partial digestion, where probes (markers) are hybridized to partially
digested DNA [9, 1]; simplified partial digest, where clones are cleaved in either one or in
all restriction sites [3]; labeled partial digestion, where both ends of the DNA molecule
are labeled before digestion [10]; and multiple complete digestion, where many different
enzymes are used [5]. For a good survey on the PARTIAL DIGEST problem, see [16]; and

'The approximation ratio of an algorithm 4 for any instance I is Oi(TI()I) , where A(I) is the number of

points in the solution of algorithm A, and OPT(I) is the number of points in an optimal solution.

?1.e., polynomial in the largest number of the input, but not necessarily polynomial in the bit length of
the largest number.

*Two (noncongruent) sets of points are homometric if they generate the same multiset of pairwise
distances.



for more recent discussions on the problem, see [15] and [11].

The paper is organized as follows: In Sect. 2 we present the hardness results of MIN
PARTIAL DIGEST SUPERSET. Sect. 3 deals with the ¢t-PARTIAL DIGEST SUPERSET prob-
lem. In Sect. 4 we provide the (in-) approximability results on MAX PARTIAL DIGEST
SUBSET. Finally, we conclude and present some open problems in Sect. 5.

2 NP-hardness of MIN PARTIAL DIGEST SUPERSET

In this section we show that MIN PARTIAL DIGEST SUPERSET is NP-hard by proposing a
reduction from EQUAL SuM SuUBSETS. We start with some notation.

A multiset with elements 1,1,3,5,5, and 8 is denoted by {1,1,3,5,5,8}. Subtracting
an element from a multiset will remove it only once (if it is there), thus {1,1,3,5,5,8} —
{1,4,5,5} = {1,3,8}. Given a set of integers X = {xy,...,2,}, the distance multiset
A(X) is defined as the multiset of all distances of X, i.e., A(X) :={]z; — 2| |1 <t < j < n}.
We denote the sum of the elements of a set X of integers by sum(X), i.e., sum(X) :=
> wex ©- We say that a set of points P covers distance multiset D if D C A(P).

Let D = {dy,...,d;}. If m is the minimal number such that a set P of cardinality m
with D C A(P) exists, then m < k4 1: We set po = 0,p; = pi—1 + d;, for 1 < i < k,
and Py = {po,...,pr}, i.e., we simply put all distances from D in a chain “one after
the other” (cf. Figure 1). In P, each distance d; induces a new point, and we use one
additional starting point 0. Obviously, set Py, covers D and has cardinality k4 1.

dy dy m

Po b P2 Pk

Figure 1: Trivial solution for a distance multiset D.

Observe that PARTIAL DIGEST <, MIN PARTIAL DIGEST SUPERSET: Given an
instance P of PARTIAL DIGEST of size |P| = k, there is a solution for P if and only
if the minimal solution for the MIN PARTIAL DIGEST SUPERSET instance P has size

m = % + \/% + 2k (in this case, k = (T;))
Theorem 1. MIN PARTIAL DIGEST SUPERSET s NP-hard.

Proof. We reduce EQUAL SUM SUBSETS to MIN PARTIAL DIGEST SUPERSET, where
EqQuaL Sum SuBsETS is an NP-complete problem [18] that is defined as follows: Given

a set of n numbers A = {ay,...,a,}, are there two disjoint nonempty subsets X,V C A
such that sum(X) = sum(Y)?
Given an instance A = {aq,...,a,} of EQUAL SuMm SUBSETS, we set D = A (and

k = n), and claim the following: There is a solution for the EQuAL Sum SUBSETS instance
A if and only if a minimal solution for the MIN PARTIAL DIGEST SUPERSET instance D
has at most n points.

“only if” part: Let X and Y be a solution for the EQUAL SuM SUBSETS instance.
Assume w.lo.g. that X = {ay,...,a,} and Y = {a,41,...,a,} for some 1 <r < s < n.
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Figure 2: Solution if there are two sets of equal sum.
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Figure 3: A solution containing a cycle yields two subsets of equal sum: the overall lenght
of right jumps equals to the overall length of left jumps.

We construct a set P which covers D and has at most cardinality n. Similarly to the
construction of Py, we line up the distances from D. In this case, two chains start at
zero: those distances from X and those from Y (cf. Figure 2); the remaining distances
from D — (X UY) are at the end of the two chains.

Notice that the two chains corresponding to X and Y share two points, namely zero
and their common endpoint. This will allow us to find a covering set with at most n points.
Let P ={poy..-yPs—1,qst1s---5qn}. Obviously, P is a set of cardinality n. Moreover, by
construction (cf. Figure 2), it holds that D = {aq,...,a,} C A(P).

“if” part: Let P = {py,...,pm} be an optimal solution for the MIN PARTIAL DIGEST
SUPERSET instance with m < n 4+ 1. Since P covers D, for each a € D there is a pair
(p,q) of points p,q € P such that « = |p — ¢|. For each a € D, we choose one such pair
and say that it is associated with value a. We define a graph G = (V, E) with V = P and

E={(p,q) | (p, q) is associated with some a¢ € D},

i.e., G contains only those edges corresponding to some distance in D. Thus, |V| = m
and |E| = |D| = n. Since m < n, this graph contains a cycle. We show that such a cycle
induces a solution of the EQUAL SuM SUBSETS instance.

Let C =¢y1,...,¢5 be a cycle in G (see Fig. 3). Then |c;41 —¢;| € D, forall 1 <i<s
(with some abuse of notation we consider ¢,4; = ¢1). Assume w.lo.g. that |c;41 — ¢
is associated with a;, for 1 < i < 5. We define IT = {i € {1,...,s} | ¢;41 > ¢} and
I=={j€{l,...,s}]| ¢j41 < ¢;}. This yields
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Sets X :={a; |i € IT}and Y :={a; | j € I"} yield equal sums, and thus a solution
of the EQUAL SUM SUBSETS instance. O

3 NP-hardness of t-PARTIAL DIGEST SUPERSET

In the previous section, we proved NP-hardness for MIN PARTIAL DIGEST SUPERSET by a
reduction from EQUAL SuM SUBSETS. In the proof, we distinguished whether a minimal
solution uses at most n points, or n 4+ 1 points. In this section, we will generalize this
proof and allow to “shift” this boundary to some value t that is sufficiently large.

We will show that ¢-PARTIAL DIGEST SUPERSET is NP-hard for every 0 < € < 1/2if we

set t to be at least f(|D]) = |D|%+E. Observe that for a distance multiset D, a minimal set
of points covering D has cardinality at least $+4/% + 2|D| ~ |D|% Moreover, the PARTIAL

DIGEST problem is equivalent to t-PARTIAL DIGEST SUPERSET with ¢ = $+ /1 + 2|D| =

O (ID|'?).
We need to introduce some notation for large numbers first. The numbers are ex-
pressed in the number system of some base Z. We denote by {(ay,...,a,)z the number

Y oi<i<n a; Z"'; we say that a; is the i-th digit of this number. We will choose base Z
large enough such that adding up numbers will not lead to carry-digits from one digit
to the next. Therefore, we can add numbers digit by digit. The same holds for scalar
products. For example, having base Z = 27 and numbers o = (3,5, 1), 5 = (2,1, 0), then
a+ [ =(56,1)and 3-a = (9,15,3). We will drop the base Z from our notation if this is
clear from the context. Moreover, we will allow different bases for each digit. We define the
concatenation of two numbers by (a1, ...,a,) ©{b1, ..., bm) = (a1, ..., an,b1,...,bm), i€,
a®f =aZ™+ 3, where m is the number of digits in 3. Let A, (¢) :==(0,...,0,1,0,...,0)
be the number that has n digits, all 0’s except for the ¢-th position where the digit is 1.
Moreover, 1,, := (1,...,1) has n digits, all 1’s, and 0, := (0,...0) has n zeros. Notice
that 1, = 2™ — 1.

Theorem 2. For any 0 < € < 1/2 and for any t > f(|D|) = |D|%+E, t-PARTIAL DIGEST
SUPERSET is NP-hard.

Proof (sketch). We will prove the theorem for the case t = f(|D|), as the case t > f(|D])
is a simple extension. In particular, we will show that EQUAL SuM SUBSETS can be
reduced to <, ¢-PARTIAL DIGEST SUPERSET. Let {aq,...,a,} be an instance of EQuaL
SuM SuBSETS. Informally speaking, we will “blow up” the instance of t-PARTIAL DIGEST
SUPERSET used in the proof of Theorem 1, by first adding a set B of r “essential” distances
with the property that any solution must use r 4+ 1 points to cover this set, and these
points cannot be used for the distances in {ay,...,a,}. Then, a suitable set C’ of O(r?)
“inessential” distances is used so to blow up the size of D; these distances are covered “for
free” by the points used for B. Thus, n 4+ r points are sufficient if and only if the instance
of EQUAL SuM SUBSETS is a YES instance.

We define the distances as numbers with base Z = r? + 3" a;. Let a} = (a;) © 0,
and A'={a} |1 <i<n}. For 1<j<r/letb;=(0)®A,(j),and B={b; |1 <j<r}
Forl<u<uv<rleteypy=3 4 b, and C={cyp |1 <u<v<r}



The instance of t-PARTIAL DIGEST SUPERSET is defined as D = A" U B U C’, where
C' C C. Cleatly, |D| = n+r 4+ |C'| and t = n+ r. We want |C’| to satisfy ¢t =
n+r = f(|D]) = (n+r+|C)/*. To this aim it would suffice to take any C’ with
|IC'| = (n+ r)1+27 — (n+r). However, the latter number may not be an integer. In this
case, the proof can be easily adjusted by considering |C'| = [(n + r)lfTJ —(n+7r), a
sufficiently large n, and r polynomial in n.

We claim that there are two subsets of A of equal sum if and only if there is a set P
of at most ¢ points such that D C A(P).

The proof of this equivalence is based on the fact that, by construction, no subset of
distances from BUC" can have the same length as a subset of A’. Therefore, we need r+1
points to cover all distances from BUC’. The remaining set A’ behaves as in the proof of
Theorem 1: by reusing one of the r 4+ 1 points above, we we need at most n further points
to cover A’; as in the proof of Theorem 1, less than n points are necessary if and only if
there exists a solution for the EQUAL SUM SUBSETS instance. |

4 (In-) Approximability of MAX PARTIAL DIGEST SUBSET

In this section, we show that MAX PARTIAL DIGEST SUBSET is almost as hard to approx-
imate as MAXIMUM CLIQUE, and we give a trivial approximation algorithm that achieves
a matching approximation ratio.

We construct a reduction from MaX CLIQUE to MAX PARTIAL DIGEST SUBSET. MAX
CLIQUE is the problem of finding a maximum complete subgraph from a given graph. It
cannot be approximated by any polynomial-time algorithm with an approximation ratio
of n'=¢ for any € > 0, where n is the number of vertices of the input graph, unless P = NP
[7]. Our reduction is gap-preserving, which means that the inapproximability of Max
CLIQUE is transfered to MAX PARTIAL DIGEST SUBSET.

Suppose we are given a graph G = (V, E') with vertex set V = {vy,...,v,} and edge
set £ C V xV. We construct an instance D of MAX PARTIAL DIGEST SUBSET by creating
a number d; ; =0, ©1;_; ®0,,_; with base Z = n% + 1 for each (v;,v;) € E,j > 1.

Let OPT be the size of the maximum clique in G (i.e., the number of vertices in the
maximum clique), let OPT’ be the maximum number of points that can be placed on a
line such that all pairwise distances appear in D, let k > 0 be an integer, and let ¢ > 0.
The following two lemmas show how the reduction works.

Lemma 3. OPT > kn'=¢ = OPT' > kn'~

Proof. Assume we are given a clique in graph G of size kn'~¢. We construct a solution

for the corresponding MAXIMUM PARTIAL DIGEST instance D by positioning a point at
position v} = 1; ® 0,,_; for each vertex v; in the clique. This yields a feasible solution for
D, since — for j > i — each distance v; —v=0,01,_,®0,_; = d; ; between two points

=
v; and v corresponds to an edge in G and is therefore encoded as distance d; ; in D. O

Lemma 4. OPT <k = OPIT' <k

Proof. We prove the contraposition, i.e.,

OPT' >k = OPT > k.



Suppose we are given a solution of the MAX PARTIAL DIGEST SUBSET instance con-
sisting of k points p; < ... < pi on the line, where we assume w.l.o.g. that py = 0,. Let
d; v jmax = Pk — P1- Note that d and thus ¢in and jmax are uniquely defined by
construction.

min,Jmax

Each of the points po, ..., pr—1 from the solution has the following properties:

1. It only has zeros and ones in its digits, as the distance to point p; would not be in
D otherwise.

2. It only has zeros in the first ¢4y, digits, as the distance to point pg would not be in
D otherwise.

3. It contains at most a single continuous block of ones in its digits, as the distance to
point p; would not be in D otherwise.

The points py, ..., pr—1 also have the property that they are either all of the form 0, , ©
1,005, —1—ip, ©0,_;.. orall of the form 0, , ©0;, © 1, . ;. ©0,_; . , where
tmin < I < Jmax. If both forms existed in a solution, i.e., at least one point of each form
existed, then the distance between points of different form would not be in D, since at
least one digit would not be 0 or 1.

We construct a vertex set V'’ that will turn out to be a clique by letting v; , and
Vjax De in this set V', Additionally, for each pys for &' = 2,...k — 1, where pys is of the
form ;.. © 1 © 05t © On gy 01 0iiy © 00 © 1 1r—inin © Onji,» Where
tmin < I’ < jmax, we let vy be in the vertex set V.

In order to see that the vertex set V' is a clique, consider the difference py — pgn of
any two points with &’ > k”, where p has led to the inclusion of vertex vy into the set
and ppr has led to the inclusion of vertex vy into the clique. This difference is exactly
dyp yn for both possible forms, and thus the edge vy, vy is in E. O

The promise problem of MAX CLIQUE, in which we are promised that the size of the
1=¢ or less than k, and we are
to decide which is true, is NP-hard to decide [7]. Lemmas 3 and 4 transform this promise
problem of MaXx CLIQUE into a promise problem of MaX PARTIAL DIGEST SUBSET, in
which we are promised that in an optimum solution of D either at least kn'~¢ or less than
k points can be placed on a line. This promise problem of MAX PARTIAL DIGEST SUBSET
is NP-hard to decide as well, since a polynomial-time algorithm for it could be used to
decide the promise problem of MAX CLIQUE. Thus, unless P = NP, MAXIMUM PARTIAL
DIGEST cannot be approximated with an approximation ratio of:

Enl—e
k

where |D| is the number of distances in instance D. We have shown the following:

maximum clique in a given graph G is either at least kn

=n'" > |D|F™,

Theorem 5. MAX PARTIAL DIGEST SUBSET cannolt be approzimated by any polynomial-
time algorithm with an approzimation ratio of |D|2~° for any € > 0, where |D| is the
number of input distances, unless P = NP.

A trivial approximation algorithm for a MAX PARTIAL DIGEST SUBSET instance D =
{di,...,dp} that simply places two points at distance d; from each other achieves a

matching approximation ratio of O(|D|%)



5 Conclusion and Open Problems

We have shown that the optimization problems MIN PARTIAL DIGEST SUPERSET and
MAX PARTIAL DIGEST SUBSET are NP-hard. Moreover, the maximization problem is not
approximable within reasonable bounds, unless P = NP. This answers the problem left
open in [11, Problem 12.116], and gives rise to new open questions:

1. Since our optimization variations model different error types that (always) occur in

real-life data, our hardness results suggest that real-life PARTIAL DIGEST problems
are in fact instances of NP-hard problems. However, the backtracking algorithm
from [16] seems to run in polynomial-time for real-life instances. How can this be
explained? What relevant properties do real-life instances have that prevent them
from becoming intractable?

. What is the best approximation ratio for MIN PARTIAL DIGEST SUPERSET?

. Consider the following variation of PARTIAL DIGEST: Given a set S of distances

(instead of a multiset), find (a minimum/maximum number of) points on a line such
that each distance between two of the points is in S. What is the computational
complexity of this problem?

. Is there a polynomial-time algorithm for the PARTIAL DIGEST problem if we restrict

the input to be a set of distances (instead of a multiset), i.e., if we know in advance
that each two distances are pairwise distinct?

Finally and obviously, the main open problem is still the computational complexity of

PARTIAL DIGEST.

Acknowledgments We would like to thank Dirk Bongartz and Walter Unger for point-
ing us to the PARTIAL DIGEST problem, and Aris Pagourtzis and Peter Widmayer for
their help in this work.

References

[1] F. Alizadeh, R. M. Karp, L. A. Newberg, and D. K. Weisser. Physical mapping of chromo-

—

=

somes: A combinatorial problem in molecular biology. In Symposium on Discrete Algorithms,

pages 371-381, 1993.

S. Arora and C. Lund. Hardness of approximations. In D. Hochbaum, editor, Approzimation
Algorithms for NP-Hard Problems, pages 399-446. PWS Publishing Company, 1996.

J. Blazewicz, P. Formanowicz, M. Kasprzak, M. Jaroszewski, and W. T. Markiewicz. Construc-
tion of DNA restriction maps based on a simplified experiment. Bioinformatics, 17(5):398-404,
2001.

T. Dakié¢. On the turnpike problem. PhD thesis, Simon Fraser University, 2000.

D. Fasulo. Algorithms for DNA Restriction Mapping. PhD thesis, University of Washington,
2000.

[6] J. Flitterer. Personal communication, 2002.

10



[7]

(8]

J. Hastad. Clique is hard to approximate within n'=¢. In Proc. of the Symposium on Foun-
dations of Computer Science, 1996.

P. Lemke and M. Werman. On the complexity of inverting the autocorrelation function of a
finite integer sequence, and the problem of locating n points on a line, given the (g) unlabelled
distances between them. Preprint 453, Institute for Mathematics and its Application IMA,
1988.

L. Newberg and D. Naor. A lower bound on the number of solutions to the probed partial
digest problem. Advances in Applied Mathematics (ADVAM), 14:172-183, 1993.

G. Pandurangan and H. Ramesh. The restriction mapping problem revisited. Journal of
Computer and System Seciences (JCSS), to appear 2002. Special issue on Computational
Biology.

P. Pevzner. Computational Molecular Biology. MIT Press, 2000.

P. A. Pevzner and M. S. Waterman. Open combinatorial problems in computational molecular
biology. In Proc. of the Third Israel Symposium on Theory of Computing and Systems ISTCS,
pages 158-173. IEEE Computer Society Press, 1995.

J. Rosenblatt and P. Seymour. The structure of homometric sets. SIAM Journal of Algorithms
and Discrete Mathematics, 3(3):343-350, 1982.

D. B. Searls. Formal grammars for intermolecular structure. In Proceedings of the International
IEFEE Symposium on Intelligence in Neural and Biological Systems, 1995.

J. Setubal and J. Meidanis. Introduction to Computational Molecular Biology. PWS Boston,
1997.

S. S. Skiena, W. Smith, and P. Lemke. Reconstructing sets from interpoint distances. In Sizth
ACM Symposium on Computational Geometry, pages 332-339, 1990.

S. S. Skiena and G. Sundaram. A partial digest approach to restriction site mapping. Bulletin
of Mathematical Biology, 56:275-294, 1994.

G. J. Woeginger and Z. L. Yu. On the equal-subset-sum problem. Information Processing
Letters, 42:299-302, 1992.

7. Zhang. An Exponential Example for a Partial Digest Mapping Algorithm. Journal of
Computational Biology, 1(3):235-239, 1994.

11



